Trinity Center of Excellence

Managed by: New Mexico

Alliance for Computing at Extreme Scales (ACES)

NNSA ASC tri-lab simulation community

COE Leads:

Hai Ah Nam

Rob Hoekstra, Mike Glass

Shawn Dawson

DOE CoE Performance Portability Workshop

April 19, 2016

COMPUTE NODES		
Intel "Haswell" Xeon E5-2698v3	Intel Xeon Phi "Knights Landing"	
9436 nodes	> 9500 nodes	
Dual socket, 16 cores/ socket, 2.3 GHz	1 socket, 60+ cores, > 3 Tflops/KNL	
128 GB DDR4	96 GB DDR4 + 16GB HBM	

#6 on Top500 November 2015 8.1 PFlops (11 PF Peak)

Cray Aries 'Dragonfly' Interconnect

Advanced Adaptive Routing All-to-all backplane & between groups

Cray Sonexion Storage System 78 PB Usable, ~1.6 TB/s

Cray DataWarp

576 Burst Buffer Nodes 3.7 PB, ~3.3 TB/s

Trinity - Performance (Portable) Challenges

COMPUTE NODES

Intel "Haswell" Xeon	Intel Xeon Phi
E5-2698v3	"Knights Landing"
9436 nodes	> 9500 nodes
Dual socket, 16 cores/	1 socket, 60+ cores,
socket, 2.3 GHz	> 3 Tflops/KNL
128 GB DDR4	96 GB DDR4 + 16GB HBM

- Enabling (not hindering)Vectorization
- Increase parallelism, cores/threads
- High Bandwidth Memory
- Burst Buffer reduce I/O overhead

#6 on Top500 November 2015 8.1 PFlops (11 PF Peak)

Cray Aries 'Dragonfly' Interconnect

Advanced Adaptive Routing All-to-all backplane & between groups

Cray Sonexion
Storage System

78 PB Usable, ~1.6 TB/s

Cray DataWarp

576 Burst Buffer Nodes 3.7 PB, ~3.3 TB/s

Trinity — Challenges/Opportunities

COMPUTE NODES		
Intel "Haswell" Xeon E5-2698v3	Intel Xeon Phi "Knights Landing"	
9436 nodes	> 9500 nodes	
Dual socket, 16 cores/ socket, 2.3 GHz	1 socket, 60+ cores, > 3 Tflops/KNL	
128 GB DDR4	96 GB DDR4 + 16GB HBM	

- Scale and scaling
- **Dual partition new workflow &** simulation capabilities
- Parallel FS new Lustre DNE capabilities to improve performance
- **BB** enable new workflow capabilities
- **Cross compiling (impacts productivity)**

#6 on Top500 November 2015 8.1 PFlops (11 PF Peak)

Cray Aries 'Dragonfly' Interconnect

Advanced Adaptive Routing All-to-all backplane & between groups UNCLASSIFIED LA-UR-16-22721

Cray Sonexion Storage System 78 PB Usable, ~1.6 TB/s

Cray DataWarp 576 Burst Buffer Nodes 3.7 PB, ~3.3 TB/s

The Master Plan

Source: http://southpark.wikia.com/wiki/Underpants_Gnomes

Phase 2 ...

Source: http://southpark.wikia.com/wiki/Underpants_Gnomes

Phase 2

- Early access HW/SW
- Collaborating with COE vendor partners, early, often and with complete honesty
 - Kernel
 - Mini-App
 - Proxy

- Sharing our concerns
- Communicate

Access to Early HW/SW

- Application Regression Test Beds x2 (Cray) ~100 nodes (June 2015), Software Dev. Testbed < 100 nodes – Phase I, upgrades for Phase II
- White Boxes (Intel) ~ few nodes (Sept 2015/April 2016)

COE Collaborations

Cray

- John Levesque (50%)
- Jim Schwarzmeier (20%)
- Gene Wagenbreth (100%) new
- Mike Davis (SNL), Mike Berry (LANL) on-site analyst
- SMEs (Performance & Tools)
- Acceptance team
- Intel
 - Ron Green, on-site analyst (SNL/LANL)
 - Discovery Session, Dungeons SMEs

- ASC codes are often export controlled, large and complex = a lot of paperwork
- Embedded vendor support/expertise is needed = US citizenship
- Original projects focus on a single code/lab

CoE Projects/Highlights

SNL

- Focused on preparing the Sierra engineering analysis suite for Trinity
- Proxy Codes: miniAero (explicit Aerodynamics), miniFE (implicit FE), miniFENL, BDDC (Domain Decomp. Solver)
- 'Super' Dungeon Session including
 - More realistic code/stack
 - NALU (proxy application for FEM assembly for low Mach CFD) +
 Trilinos multi-grid solver, Kokkos + BDDC
 - 6 weeks preparation leading up to Dungeon session
 - Expose Intel to 'real' codes & issues long compile times, long tools analysis times, compiler issues, MKL issues.
 - Great for relationship/collaboration building
- More embedded support from Cray (Gene Wagenbreth, March 2016)

CoE Projects/Highlights

LLNL

- Developed Proxy Code: Quicksilver (Monte Carlo transport)
 - Dynamic neutron transport problem (MPI or MPI+threads)
 - Use in performance portability activities
 - Proxy codes are not an example of efficient source code, rather a representation of a larger application
- Discovery Sessions (x2) with proxy applications & performance portable abstraction layer

CoE Projects/Highlights

LANL

- Full application exploration very large, multi-physics, multimaterial AMR application (MPI-only)
 - Discovery session (Intel) & Deep dive (Cray) on-site
 - Prototyping SPMD in radiation diffusion package as an option in code threading implementation
 - Addressing performance bottlenecks in solvers library (HYPRE) & code
 - Addressing technical debt
- Broadening scope of COE projects to include deterministic Sn transport (full application and proxy)
- Discovery sessions & deep dive activities

Los Alamos NATIONAL LABORATORY

Sharing Best Practices... for now

- COE Tri-Lab Bi-Weekly Meetings/Mailing Lists
 - Logistics, "is anyone else seeing this?", knlchatter
- COE (monthly) seminar bringing the outside world in
 - March 2016 Peter Mendrygal, Cray Performance
 - June 2016 TBD
- KNL (monthly) working group
 - April 28, 2016 John Levesque, Cray
- Activities (dungeon, discovery, training)
 - Observers invited

